Full Time Indie Hacking: First 3 Months in Review

Photo by Paul Bulai

At the end of 2022 I stopped contracting at Help Scout to focus full time on Preceden, a SaaS timeline maker tool that I had been running mostly as a side project since 2010. It’s April now so I figured I’d share an update on how things are going. My periodic Friday updates cover a lot of this too, but it seemed like it’d be useful for me and as well as anyone following along to zoom out and share a high level overview of what I’ve been up to.

Emergent Mind

My intent when I stopped contracting was to focus full time on growing Preceden. However, ChatGPT’s launch at the end of November and my subsequent launch of LearnGPT (a ChatGPT examples site) at the beginning of December wound up complicating things, to say the least.

I first announced in January that I was going to shut down LearnGPT to focus on Preceden. Then I got some offers to buy it, so put it up for sale. Then, I decided not to sell it and to shift directions. Instead of it being a ChatGPT examples site called LearnGPT, it would be a social news community focused on AI and be called Emergent Mind. But no, actually not a social news community, but an AI news aggregator/AI education site powered by GPT-4.

LearnGPT at the beginning of the year:

Emergent Mind today:

A chaotic start, for sure, and a savvier entrepreneur likely would have avoided a lot of these missteps. But, for me, it’s how I like to work: ship, learn, and iterate quickly. I wind up heading down a lot of wrong paths with this approach, but usually wind up learning from those mistakes and adjusting course. And for me, this approach usually works better than lots of careful planning, especially for experimental products like Emergent Mind.

And so how is Emergent Mind doing?

It’s doing okay. Traffic is up, sign ups for its upcoming newsletter are up, Discord participation is up, feedback from readers is flowing, and generally it feels like there’s a growing amount of excitement and interest in the site. It hasn’t taken off by any means, but it’s very early still, and I’m optimistic (as always) about its potential. Q2 should see a ton of product improvements, the launch of its GPT4-generated AI newsletter, and hopefully an up-and-to-the-right trend for its traffic.


Poor Preceden, never quite getting my full attention, even after supposedly going full time on it.

In January I launched an AI Suggestions feature to help users automatically add content to their timelines instead of having to manually build it entirely from scratch. Milan (the part-time designer I work with for both Preceden and Emergent Mind) and I iterated on it a ton in January and February and I’m quite happy with where it wound up.

The next big piece – and what we’re working on now – is building a stand-alone version that logged out users can use to generate timelines (and optionally sign up and pay to edit). It’s quite good IMHO and I’m excited to launch it in a few weeks. Which brings me to challenges.


Needless to say, juggling two products with just two people can be challenging. Every hour we spend working on Emergent Mind is a hour that we don’t spend working on Preceden.

And remember too that Preceden actually makes money, whereas Emergent Mind for the moment is just burning money. It’s still not obvious to me that deciding to continue working on LearnGPT/Emergent Mind was the right decision. That said, I love having a new, speculative side project, especially one that’s at the cutting edge of what’s possible (an AI-first product powered by GPT-4), has a ton of potential, and one that doesn’t require sifting through a decade of messy, legacy code to update.

As I’ve mentioned in other recent updates too, I haven’t quite figured out how to balance all of these things well. My natural inclination is to jump into VS Code each day and code for 8+ hours straight, jumping between Preceden and Emergent Mind throughout the day. I ship a lot this way, but it takes it toll over time, and I need to do a better job of pacing myself to avoid burnout long term.

What’s next

Q1 definitely felt like I was finding my footing: what products would I be working on going forward and what direction did I want to take those things. Thankfully, I’m mostly on the other side of that. If Emergent Mind does wind up taking off, I’ll have a whole new set of tough decisions to make, but I’ll be lucky if it plays out like that. We will see.

If you find yourself saying to yourself “Matt you really should ______” while reading any of this, I’d love that feedback: @mhmazur on Twitter or matthew.h.mazur@gmail.com.

Thanks for following along 👋.

What I’ve Been Up To

This morning I was catching up with my friend and coworker Dave Martin and we got to talking about blogging and how we both miss casual blogging: things like writing about what we’ve working on, what issues we’re running into, what we’re learning etc.

The problem for me boils down to this really high bar I have set in my head for what’s worthy of a blog post. I like writing long technical posts and it’s difficult getting used to the idea that short nontechnical posts are just fine too.

So, in an effort to get back into blogging, here’s a quick update on what I’ve been up to:

I’ve been at Help Scout now for about 4½ months and am really enjoying it. My coworkers are awesome, I love the product, and I’m really getting to level up my data science and analytics skills which I plan to write more about in the future.

My only side project these days is my 7-year old timeline maker service, Preceden. Besides about an hour of customer support each week (via Help Scout, of course), it’s almost entirely passive, though I try to put a few hours into product development and marketing each month to keep improving it.

On the home front, my two year old son and one year old daughter are doing great. I feel incredibly lucky to work remotely which lets me spend more time with them and my wife each day.

I’ve been trying to focus more on my health lately, not because of any major issues, just in an effort to feel more energetic and less stressed each day. Things like sleeping and exercising more, avoiding coffee, meditating, not checking the news so often, etc. I’ve had mixed success maintaining these efforts long term though… it’s a work in progress :).

If we haven’t chatted in a while, I’d love to catch up. Drop me a note anytime by email at matthew.h.mazur@gmail.com or on Twitter/Telegram @mhmazur. Cheers!

A Step by Step Backpropagation Example


Backpropagation is a common method for training a neural network. There is no shortage of papers online that attempt to explain how backpropagation works, but few that include an example with actual numbers. This post is my attempt to explain how it works with a concrete example that folks can compare their own calculations to in order to ensure they understand backpropagation correctly.

Backpropagation in Python

You can play around with a Python script that I wrote that implements the backpropagation algorithm in this Github repo.

Backpropagation Visualization

For an interactive visualization showing a neural network as it learns, check out my Neural Network visualization.

Additional Resources

If you find this tutorial useful and want to continue learning about neural networks, machine learning, and deep learning, I highly recommend checking out Adrian Rosebrock’s new book, Deep Learning for Computer Vision with Python. I really enjoyed the book and will have a full review up soon.


For this tutorial, we’re going to use a neural network with two inputs, two hidden neurons, two output neurons. Additionally, the hidden and output neurons will include a bias.

Here’s the basic structure:

neural_network (7)

In order to have some numbers to work with, here are the initial weights, the biases, and training inputs/outputs:

neural_network (9)

The goal of backpropagation is to optimize the weights so that the neural network can learn how to correctly map arbitrary inputs to outputs.

For the rest of this tutorial we’re going to work with a single training set: given inputs 0.05 and 0.10, we want the neural network to output 0.01 and 0.99.

The Forward Pass

To begin, lets see what the neural network currently predicts given the weights and biases above and inputs of 0.05 and 0.10. To do this we’ll feed those inputs forward though the network.

We figure out the total net input to each hidden layer neuron, squash the total net input using an activation function (here we use the logistic function), then repeat the process with the output layer neurons.

Total net input is also referred to as just net input by some sources.

Here’s how we calculate the total net input for h_1:

net_{h1} = w_1 * i_1 + w_2 * i_2 + b_1 * 1

net_{h1} = 0.15 * 0.05 + 0.2 * 0.1 + 0.35 * 1 = 0.3775

We then squash it using the logistic function to get the output of h_1:

out_{h1} = \frac{1}{1+e^{-net_{h1}}} = \frac{1}{1+e^{-0.3775}} = 0.593269992

Carrying out the same process for h_2 we get:

out_{h2} = 0.596884378

We repeat this process for the output layer neurons, using the output from the hidden layer neurons as inputs.

Here’s the output for o_1:

net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1

net_{o1} = 0.4 * 0.593269992 + 0.45 * 0.596884378 + 0.6 * 1 = 1.105905967

out_{o1} = \frac{1}{1+e^{-net_{o1}}} = \frac{1}{1+e^{-1.105905967}} = 0.75136507

And carrying out the same process for o_2 we get:

out_{o2} = 0.772928465

Calculating the Total Error

We can now calculate the error for each output neuron using the squared error function and sum them to get the total error:

E_{total} = \sum \frac{1}{2}(target - output)^{2}

Some sources refer to the target as the ideal and the output as the actual.
The \frac{1}{2} is included so that exponent is cancelled when we differentiate later on. The result is eventually multiplied by a learning rate anyway so it doesn’t matter that we introduce a constant here [1].

For example, the target output for o_1 is 0.01 but the neural network output 0.75136507, therefore its error is:

E_{o1} = \frac{1}{2}(target_{o1} - out_{o1})^{2} = \frac{1}{2}(0.01 - 0.75136507)^{2} = 0.274811083

Repeating this process for o_2 (remembering that the target is 0.99) we get:

E_{o2} = 0.023560026

The total error for the neural network is the sum of these errors:

E_{total} = E_{o1} + E_{o2} = 0.274811083 + 0.023560026 = 0.298371109

The Backwards Pass

Our goal with backpropagation is to update each of the weights in the network so that they cause the actual output to be closer the target output, thereby minimizing the error for each output neuron and the network as a whole.

Output Layer

Consider w_5. We want to know how much a change in w_5 affects the total error, aka \frac{\partial E_{total}}{\partial w_{5}}.

\frac{\partial E_{total}}{\partial w_{5}} is read as “the partial derivative of E_{total} with respect to w_{5}“. You can also say “the gradient with respect to w_{5}“.

By applying the chain rule we know that:

\frac{\partial E_{total}}{\partial w_{5}} = \frac{\partial E_{total}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial w_{5}}

Visually, here’s what we’re doing:

output_1_backprop (4)

We need to figure out each piece in this equation.

First, how much does the total error change with respect to the output?

E_{total} = \frac{1}{2}(target_{o1} - out_{o1})^{2} + \frac{1}{2}(target_{o2} - out_{o2})^{2}

\frac{\partial E_{total}}{\partial out_{o1}} = 2 * \frac{1}{2}(target_{o1} - out_{o1})^{2 - 1} * -1 + 0

\frac{\partial E_{total}}{\partial out_{o1}} = -(target_{o1} - out_{o1}) = -(0.01 - 0.75136507) = 0.74136507

-(target - out) is sometimes expressed as out - target
When we take the partial derivative of the total error with respect to out_{o1}, the quantity \frac{1}{2}(target_{o2} - out_{o2})^{2} becomes zero because out_{o1} does not affect it which means we’re taking the derivative of a constant which is zero.

Next, how much does the output of o_1 change with respect to its total net input?

The partial derivative of the logistic function is the output multiplied by 1 minus the output:

out_{o1} = \frac{1}{1+e^{-net_{o1}}}

\frac{\partial out_{o1}}{\partial net_{o1}} = out_{o1}(1 - out_{o1}) = 0.75136507(1 - 0.75136507) = 0.186815602

Finally, how much does the total net input of o1 change with respect to w_5?

net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1

\frac{\partial net_{o1}}{\partial w_{5}} = 1 * out_{h1} * w_5^{(1 - 1)} + 0 + 0 = out_{h1} = 0.593269992

Putting it all together:

\frac{\partial E_{total}}{\partial w_{5}} = \frac{\partial E_{total}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial w_{5}}

\frac{\partial E_{total}}{\partial w_{5}} = 0.74136507 * 0.186815602 * 0.593269992 = 0.082167041

You’ll often see this calculation combined in the form of the delta rule:

\frac{\partial E_{total}}{\partial w_{5}} = -(target_{o1} - out_{o1}) * out_{o1}(1 - out_{o1}) * out_{h1}

Alternatively, we have \frac{\partial E_{total}}{\partial out_{o1}} and \frac{\partial out_{o1}}{\partial net_{o1}} which can be written as \frac{\partial E_{total}}{\partial net_{o1}}, aka \delta_{o1} (the Greek letter delta) aka the node delta. We can use this to rewrite the calculation above:

\delta_{o1} = \frac{\partial E_{total}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} = \frac{\partial E_{total}}{\partial net_{o1}}

\delta_{o1} = -(target_{o1} - out_{o1}) * out_{o1}(1 - out_{o1})


\frac{\partial E_{total}}{\partial w_{5}} = \delta_{o1} out_{h1}

Some sources extract the negative sign from \delta so it would be written as:

\frac{\partial E_{total}}{\partial w_{5}} = -\delta_{o1} out_{h1}

To decrease the error, we then subtract this value from the current weight (optionally multiplied by some learning rate, eta, which we’ll set to 0.5):

w_5^{+} = w_5 - \eta * \frac{\partial E_{total}}{\partial w_{5}} = 0.4 - 0.5 * 0.082167041 = 0.35891648

Some sources use \alpha (alpha) to represent the learning rate, others use \eta (eta), and others even use \epsilon (epsilon).

We can repeat this process to get the new weights w_6, w_7, and w_8:

w_6^{+} = 0.408666186

w_7^{+} = 0.511301270

w_8^{+} = 0.561370121

We perform the actual updates in the neural network after we have the new weights leading into the hidden layer neurons (ie, we use the original weights, not the updated weights, when we continue the backpropagation algorithm below).

Hidden Layer

Next, we’ll continue the backwards pass by calculating new values for w_1, w_2, w_3, and w_4.

Big picture, here’s what we need to figure out:

\frac{\partial E_{total}}{\partial w_{1}} = \frac{\partial E_{total}}{\partial out_{h1}} * \frac{\partial out_{h1}}{\partial net_{h1}} * \frac{\partial net_{h1}}{\partial w_{1}}



We’re going to use a similar process as we did for the output layer, but slightly different to account for the fact that the output of each hidden layer neuron contributes to the output (and therefore error) of multiple output neurons. We know that out_{h1} affects both out_{o1} and out_{o2} therefore the \frac{\partial E_{total}}{\partial out_{h1}} needs to take into consideration its effect on the both output neurons:

\frac{\partial E_{total}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial out_{h1}} + \frac{\partial E_{o2}}{\partial out_{h1}}

Starting with \frac{\partial E_{o1}}{\partial out_{h1}}:

\frac{\partial E_{o1}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial out_{h1}}

We can calculate \frac{\partial E_{o1}}{\partial net_{o1}} using values we calculated earlier:

\frac{\partial E_{o1}}{\partial net_{o1}} = \frac{\partial E_{o1}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} = 0.74136507 * 0.186815602 = 0.138498562

And \frac{\partial net_{o1}}{\partial out_{h1}} is equal to w_5:

net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1

\frac{\partial net_{o1}}{\partial out_{h1}} = w_5 = 0.40

Plugging them in:

\frac{\partial E_{o1}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial out_{h1}} = 0.138498562 * 0.40 = 0.055399425

Following the same process for \frac{\partial E_{o2}}{\partial out_{h1}}, we get:

\frac{\partial E_{o2}}{\partial out_{h1}} = -0.019049119


\frac{\partial E_{total}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial out_{h1}} + \frac{\partial E_{o2}}{\partial out_{h1}} = 0.055399425 + -0.019049119 = 0.036350306

Now that we have \frac{\partial E_{total}}{\partial out_{h1}}, we need to figure out \frac{\partial out_{h1}}{\partial net_{h1}} and then \frac{\partial net_{h1}}{\partial w} for each weight:

out_{h1} = \frac{1}{1+e^{-net_{h1}}}

\frac{\partial out_{h1}}{\partial net_{h1}} = out_{h1}(1 - out_{h1}) = 0.59326999(1 - 0.59326999 ) = 0.241300709

We calculate the partial derivative of the total net input to h_1 with respect to w_1 the same as we did for the output neuron:

net_{h1} = w_1 * i_1 + w_3 * i_2 + b_1 * 1

\frac{\partial net_{h1}}{\partial w_1} = i_1 = 0.05

Putting it all together:

\frac{\partial E_{total}}{\partial w_{1}} = \frac{\partial E_{total}}{\partial out_{h1}} * \frac{\partial out_{h1}}{\partial net_{h1}} * \frac{\partial net_{h1}}{\partial w_{1}}

\frac{\partial E_{total}}{\partial w_{1}} = 0.036350306 * 0.241300709 * 0.05 = 0.000438568

You might also see this written as:

\frac{\partial E_{total}}{\partial w_{1}} = (\sum\limits_{o}{\frac{\partial E_{total}}{\partial out_{o}} * \frac{\partial out_{o}}{\partial net_{o}} * \frac{\partial net_{o}}{\partial out_{h1}}}) * \frac{\partial out_{h1}}{\partial net_{h1}} * \frac{\partial net_{h1}}{\partial w_{1}}

\frac{\partial E_{total}}{\partial w_{1}} = (\sum\limits_{o}{\delta_{o} * w_{ho}}) * out_{h1}(1 - out_{h1}) * i_{1}

\frac{\partial E_{total}}{\partial w_{1}} = \delta_{h1}i_{1}

We can now update w_1:

w_1^{+} = w_1 - \eta * \frac{\partial E_{total}}{\partial w_{1}} = 0.15 - 0.5 * 0.000438568 = 0.149780716

Repeating this for w_2, w_3, and w_4

w_2^{+} = 0.19956143

w_3^{+} = 0.24975114

w_4^{+} = 0.29950229

Finally, we’ve updated all of our weights! When we fed forward the 0.05 and 0.1 inputs originally, the error on the network was 0.298371109. After this first round of backpropagation, the total error is now down to 0.291027924. It might not seem like much, but after repeating this process 10,000 times, for example, the error plummets to 0.0000351085. At this point, when we feed forward 0.05 and 0.1, the two outputs neurons generate 0.015912196 (vs 0.01 target) and 0.984065734 (vs 0.99 target).

If you’ve made it this far and found any errors in any of the above or can think of any ways to make it clearer for future readers, don’t hesitate to drop me a note. Thanks!

And while I have you…

In addition to dabbling in data science, I run Preceden timeline maker, the best timeline maker software on the web. If you ever need to create a high level timeline or roadmap to get organized or align your team, Preceden is a great option.