A Step by Step Backpropagation Example

Background

Backpropagation is a common method for training a neural network. There is no shortage of papers online that attempt to explain how backpropagation works, but few that include an example with actual numbers. This post is my attempt to explain how it works with a concrete example that folks can compare their own calculations to in order to ensure they understand backpropagation correctly.

If this kind of thing interests you, you should sign up for my newsletter where I post about AI-related projects that I’m working on.

Backpropagation in Python

You can play around with a Python script that I wrote that implements the backpropagation algorithm in this Github repo.

Backpropagation Visualization

For an interactive visualization showing a neural network as it learns, check out my Neural Network visualization.

Additional Resources

If you find this tutorial useful and want to continue learning about neural networks and their applications, I highly recommend checking out Adrian Rosebrock’s excellent tutorial on Getting Started with Deep Learning and Python.

Overview

For this tutorial, we’re going to use a neural network with two inputs, two hidden neurons, two output neurons. Additionally, the hidden and output neurons will include a bias.

Here’s the basic structure:

neural_network (7)

In order to have some numbers to work with, here are the initial weights, the biases, and training inputs/outputs:

neural_network (9)

The goal of backpropagation is to optimize the weights so that the neural network can learn how to correctly map arbitrary inputs to outputs.

For the rest of this tutorial we’re going to work with a single training set: given inputs 0.05 and 0.10, we want the neural network to output 0.01 and 0.99.

The Forward Pass

To begin, lets see what the neural network currently predicts given the weights and biases above and inputs of 0.05 and 0.10. To do this we’ll feed those inputs forward though the network.

We figure out the total net input to each hidden layer neuron, squash the total net input using an activation function (here we use the logistic function), then repeat the process with the output layer neurons.

Total net input is also referred to as just net input by some sources.

Here’s how we calculate the total net input for h_1:

net_{h1} = w_1 * i_1 + w_2 * i_2 + b_1 * 1

net_{h1} = 0.15 * 0.05 + 0.2 * 0.1 + 0.35 * 1 = 0.3775

We then squash it using the logistic function to get the output of h_1:

out_{h1} = \frac{1}{1+e^{-net_{h1}}} = \frac{1}{1+e^{-0.3775}} = 0.593269992

Carrying out the same process for h_2 we get:

out_{h2} = 0.596884378

We repeat this process for the output layer neurons, using the output from the hidden layer neurons as inputs.

Here’s the output for o_1:

net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1

net_{o1} = 0.4 * 0.593269992 + 0.45 * 0.596884378 + 0.6 * 1 = 1.105905967

out_{o1} = \frac{1}{1+e^{-net_{o1}}} = \frac{1}{1+e^{-1.105905967}} = 0.75136507

And carrying out the same process for o_2 we get:

out_{o2} = 0.772928465

Calculating the Total Error

We can now calculate the error for each output neuron using the squared error function and sum them to get the total error:

E_{total} = \sum \frac{1}{2}(target - output)^{2}

Some sources refer to the target as the ideal and the output as the actual.
The \frac{1}{2} is included so that exponent is cancelled when we differentiate later on. The result is eventually multiplied by a learning rate anyway so it doesn’t matter that we introduce a constant here [1].

For example, the target output for o_1 is 0.01 but the neural network output 0.75136507, therefore its error is:

E_{o1} = \frac{1}{2}(target_{o1} - out_{o1})^{2} = \frac{1}{2}(0.01 - 0.75136507)^{2} = 0.274811083

Repeating this process for o_2 (remembering that the target is 0.99) we get:

E_{o2} = 0.023560026

The total error for the neural network is the sum of these errors:

E_{total} = E_{o1} + E_{o2} = 0.274811083 + 0.023560026 = 0.298371109

The Backwards Pass

Our goal with backpropagation is to update each of the weights in the network so that they cause the actual output to be closer the target output, thereby minimizing the error for each output neuron and the network as a whole.

Output Layer

Consider w_5. We want to know how much a change in w_5 affects the total error, aka \frac{\partial E_{total}}{\partial w_{5}}.

\frac{\partial E_{total}}{\partial w_{5}} is read as “the partial derivative of E_{total} with respect to w_{5}“. You can also say “the gradient with respect to w_{5}“.

By applying the chain rule we know that:

\frac{\partial E_{total}}{\partial w_{5}} = \frac{\partial E_{total}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial w_{5}}

Visually, here’s what we’re doing:

output_1_backprop (4)

We need to figure out each piece in this equation.

First, how much does the total error change with respect to the output?

E_{total} = \frac{1}{2}(target_{o1} - out_{o1})^{2} + \frac{1}{2}(target_{o2} - out_{o2})^{2}

\frac{\partial E_{total}}{\partial out_{o1}} = 2 * \frac{1}{2}(target_{o1} - out_{o1})^{2 - 1} * -1 + 0

\frac{\partial E_{total}}{\partial out_{o1}} = -(target_{o1} - out_{o1}) = -(0.01 - 0.75136507) = 0.74136507

-(target - out) is sometimes expressed as out - target
When we take the partial derivative of the total error with respect to out_{o1}, the quantity \frac{1}{2}(target_{o2} - out_{o2})^{2} becomes zero because out_{o1} does not affect it which means we’re taking the derivative of a constant which is zero.

Next, how much does the output of o_1 change with respect to its total net input?

The partial derivative of the logistic function is the output multiplied by 1 minus the output:

out_{o1} = \frac{1}{1+e^{-net_{o1}}}

\frac{\partial out_{o1}}{\partial net_{o1}} = out_{o1}(1 - out_{o1}) = 0.75136507(1 - 0.75136507) = 0.186815602

Finally, how much does the total net input of o1 change with respect to w_5?

net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1

\frac{\partial net_{o1}}{\partial w_{5}} = 1 * out_{h1} * w_5^{(1 - 1)} + 0 + 0 = out_{h1} = 0.593269992

Putting it all together:

\frac{\partial E_{total}}{\partial w_{5}} = \frac{\partial E_{total}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial w_{5}}

\frac{\partial E_{total}}{\partial w_{5}} = 0.74136507 * 0.186815602 * 0.593269992 = 0.082167041

You’ll often see this calculation combined in the form of the delta rule:

\frac{\partial E_{total}}{\partial w_{5}} = -(target_{o1} - out_{o1}) * out_{o1}(1 - out_{o1}) * out_{h1}

Alternatively, we have \frac{\partial E_{total}}{\partial out_{o1}} and \frac{\partial out_{o1}}{\partial net_{o1}} which can be written as \frac{\partial E_{total}}{\partial net_{o1}}, aka \delta_{o1} (the Greek letter delta) aka the node delta. We can use this to rewrite the calculation above:

\delta_{o1} = \frac{\partial E_{total}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} = \frac{\partial E_{total}}{\partial net_{o1}}

\delta_{o1} = -(target_{o1} - out_{o1}) * out_{o1}(1 - out_{o1})

Therefore:

\frac{\partial E_{total}}{\partial w_{5}} = \delta_{o1} out_{h1}

Some sources extract the negative sign from \delta so it would be written as:

\frac{\partial E_{total}}{\partial w_{5}} = -\delta_{o1} out_{h1}

To decrease the error, we then subtract this value from the current weight (optionally multiplied by some learning rate, eta, which we’ll set to 0.5):

w_5^{+} = w_5 - \eta * \frac{\partial E_{total}}{\partial w_{5}} = 0.4 - 0.5 * 0.082167041 = 0.35891648

Some sources use \alpha (alpha) to represent the learning rate, others use \eta (eta), and others even use \epsilon (epsilon).

We can repeat this process to get the new weights w_6, w_7, and w_8:

w_6^{+} = 0.408666186

w_7^{+} = 0.511301270

w_8^{+} = 0.561370121

We perform the actual updates in the neural network after we have the new weights leading into the hidden layer neurons (ie, we use the original weights, not the updated weights, when we continue the backpropagation algorithm below).

Hidden Layer

Next, we’ll continue the backwards pass by calculating new values for w_1, w_2, w_3, and w_4.

Big picture, here’s what we need to figure out:

\frac{\partial E_{total}}{\partial w_{1}} = \frac{\partial E_{total}}{\partial out_{h1}} * \frac{\partial out_{h1}}{\partial net_{h1}} * \frac{\partial net_{h1}}{\partial w_{1}}

Visually:

nn-calculation

We’re going to use a similar process as we did for the output layer, but slightly different to account for the fact that the output of each hidden layer neuron contributes to the output (and therefore error) of multiple output neurons. We know that out_{h1} affects both out_{o1} and out_{o2} therefore the \frac{\partial E_{total}}{\partial out_{h1}} needs to take into consideration its effect on the both output neurons:

\frac{\partial E_{total}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial out_{h1}} + \frac{\partial E_{o2}}{\partial out_{h1}}

Starting with \frac{\partial E_{o1}}{\partial out_{h1}}:

\frac{\partial E_{o1}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial out_{h1}}

We can calculate \frac{\partial E_{o1}}{\partial net_{o1}} using values we calculated earlier:

\frac{\partial E_{o1}}{\partial net_{o1}} = \frac{\partial E_{o1}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} = 0.74136507 * 0.186815602 = 0.138498562

And \frac{\partial net_{o1}}{\partial out_{h1}} is equal to w_5:

net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1

\frac{\partial net_{o1}}{\partial out_{h1}} = w_5 = 0.40

Plugging them in:

\frac{\partial E_{o1}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial out_{h1}} = 0.138498562 * 0.40 = 0.055399425

Following the same process for \frac{\partial E_{o2}}{\partial out_{h1}}, we get:

\frac{\partial E_{o2}}{\partial out_{h1}} = -0.019049119

Therefore:

\frac{\partial E_{total}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial out_{h1}} + \frac{\partial E_{o2}}{\partial out_{h1}} = 0.055399425 + -0.019049119 = 0.036350306

Now that we have \frac{\partial E_{total}}{\partial out_{h1}}, we need to figure out \frac{\partial out_{h1}}{\partial net_{h1}} and then \frac{\partial net_{h1}}{\partial w} for each weight:

out_{h1} = \frac{1}{1+e^{-net_{h1}}}

\frac{\partial out_{h1}}{\partial net_{h1}} = out_{h1}(1 - out_{h1}) = 0.59326999(1 - 0.59326999 ) = 0.241300709

We calculate the partial derivative of the total net input to h_1 with respect to w_1 the same as we did for the output neuron:

net_{h1} = w_1 * i_1 + w_3 * i_2 + b_1 * 1

\frac{\partial net_{h1}}{\partial w_1} = i_1 = 0.05

Putting it all together:

\frac{\partial E_{total}}{\partial w_{1}} = \frac{\partial E_{total}}{\partial out_{h1}} * \frac{\partial out_{h1}}{\partial net_{h1}} * \frac{\partial net_{h1}}{\partial w_{1}}

\frac{\partial E_{total}}{\partial w_{1}} = 0.036350306 * 0.241300709 * 0.05 = 0.000438568

You might also see this written as:

\frac{\partial E_{total}}{\partial w_{1}} = (\sum\limits_{o}{\frac{\partial E_{total}}{\partial out_{o}} * \frac{\partial out_{o}}{\partial net_{o}} * \frac{\partial net_{o}}{\partial out_{h1}}}) * \frac{\partial out_{h1}}{\partial net_{h1}} * \frac{\partial net_{h1}}{\partial w_{1}}

\frac{\partial E_{total}}{\partial w_{1}} = (\sum\limits_{o}{\delta_{o} * w_{ho}}) * out_{h1}(1 - out_{h1}) * i_{1}

\frac{\partial E_{total}}{\partial w_{1}} = \delta_{h1}i_{1}

We can now update w_1:

w_1^{+} = w_1 - \eta * \frac{\partial E_{total}}{\partial w_{1}} = 0.15 - 0.5 * 0.000438568 = 0.149780716

Repeating this for w_2, w_3, and w_4

w_2^{+} = 0.19956143

w_3^{+} = 0.24975114

w_4^{+} = 0.29950229

Finally, we’ve updated all of our weights! When we fed forward the 0.05 and 0.1 inputs originally, the error on the network was 0.298371109. After this first round of backpropagation, the total error is now down to 0.291027924. It might not seem like much, but after repeating this process 10,000 times, for example, the error plummets to 0.0000351085. At this point, when we feed forward 0.05 and 0.1, the two outputs neurons generate 0.015912196 (vs 0.01 target) and 0.984065734 (vs 0.99 target).

If you’ve made it this far and found any errors in any of the above or can think of any ways to make it clearer for future readers, don’t hesitate to drop me a note. Thanks!

557 thoughts on “A Step by Step Backpropagation Example

  1. Nice supplement especially for a beginnner who has started with Andrew Ng course. Example makes it clear. Thank you

  2. Hey, thanks for the clear explanation.
    Can I see the snapshot of dataset that could have been considered in this case. Even the first 5 rows would be good for me.

    Thanks

  3. Hi All,

    I need a very basic clarification here. From one training example considered here we see that we have two input neurons as two attributes, two units in the hidden layer but in the output layer we have two output neurons.
    Are we trying to predict the values of two dependent target variables from two independent variables in this case. Two output neurons for the case of linear regression problem where we predicts the value of one target variable based on multiple independent variables confuses me here!!

    Anyone please help me in clarifying this!! Let me know for any clarifications.

    • This is the most likely a classification case, where logistic regression is used. So o1 and o2 are 2 different classes. For example if the input is an image(pixels), and we have to recognise whether the image is of an apple or orange. Then we may represent o1 as an apple and o2 as an orange i.e if the image is an apple then [o1, o2] = [1, 0] & if the image is an apple then [o1, o2] = [0, 1].

      I hope this answers your question, if I haven’t misinterpreted it.

  4. Very very nice!!!
    Your explanation is the easiest one to understand!!!
    The best thing is that you pointed out the chain rule. That is the key to understanding backpropagation.

    • I think the method in PDF link is incorrect. The author back-propagated the errors to the hidden layer with the newly updated weights instead of the current ones.

      • I made my own code to test the same case. Updated weights were not used during back propations at all. And I got the same numbers shown here including the remained error after 10,000 iterations.

  5. This example single handedly taught me how to actually make a neural network. My one question though pertains to the weights of the bias for each layer.
    Are the bias’ and the bias weights supposed to remain unchanged, or are the weights adjusted through back propagation just as any other?

    • That’s because the biases are threshold values that are by default set as constant (Their values are governed, depending on the application of NN, by one of the following : business logic, scientific fact such as 273Kelvin or 3*10^8m/s etc.)

  6. Trying to understand why a multiplication with -1 in the dE(total)/dOut(o1).

    if f(x) = a*x^r then

    df(x) = r*a*x^(r-1)

    in this particular case

    f(x) = 1/2 * x ^ 2

    df(x) = 2 * 1/2 * x ^ (2-1) = x

    So dE(total)/dOut(o1) should be = target-actual

    However, you are multiplying by -1 which makes it actual – target.

    Where does the -1 come from?

  7. so how would the backpropagation look in the case of more hidden layers? for instance, if we have 2 hidden layers (1st layer with 2 neurons, second layer with 3), 2 input neurons and 2 output neurons. we want to find dEtotal/dw1. Would you have partial errors for each neuron in the second hidden layer? like dEh3/dneth3*w5+dEh4/dneth4*w7+dEh5/dneth5*w9 ? if so what is the value of each Ehx (x=3 to 5) or just how do you solve dEtotal/dw1?hope it makes sense

  8. 2. MNIST FOR ML BEGINNER – 아파트가 너무 비싸

  9. Do any body know any source to find a general equations for the feed forward back propagation. So we can apply the model for any number of hidden layers and output layers

  10. How to create a Neural Network in JavaScript in only 30 lines of code – Bit Treat

  11. is this a right answer: w1..w8
    -0,860918581,-1,807310582,-0,756487191,-1,69622177
    -4,934133883,-4,808773679,3,736390466,3,738422962
    Error=2,80447E-09
    am I right?

  12. Thankyo very much .I have been stumbling around many blogs to see how numerically back propagation work . You blog saved my time . :-)

  13. Thanks for this valuable article. I have a equation. When you update the hidden layers, the following equation seems to be not correct.

    \frac{\partial E_{o1}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial out_{h1}}

  14. I’m a beginner in ML. But I’ve learnt that the error function used with logistic (sigmoid) function isn’t convex, So we cannot use gradient descent algorithm due to local optima. So, why did we used it here?

  15. What's the difference between reinforcement Learning and Deep-learning? | Eventwards

  16. Really Really helpful for understanding and visualising back-propagation. Beautifully explained and very nicely graphically shown too. Thanks a lot :D

  17. Good and informative post .One comment, the use of symbols in the diagram and the in the paragraphs where you explain the back prop steps are not similar(or I should say a bit different), it will be great if the same symbol can be used,

  18. hi, thank you very much, it ist simplest explanation I found about backprop in net. I could understand all your calculation up to the last point, where you say “After this first round of backpropagation, the total error is now down to 0.291027924”.
    how did you come to this number? I think you did new forward pass with new weights and calculated new total error. do i see correct?

  19. Thank you very much Matt, it greatly helped me to find the bug in my code. But your final values are not correct: it should be { 0.011587, 0.988459 } if you did not count first run and { 0.011587, 0.988458 } if you did.

  20. Some sites I found helpful in reviewing backprop – Into DL and Beyond

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s